Energy Equation:
From: | To: |
The energy equation \( E = h \times Hz \) calculates the energy of a photon based on its frequency, where \( h \) is Planck's constant (6.626 × 10⁻³⁴ J·s) and \( Hz \) is the frequency in hertz.
The calculator uses the energy equation:
Where:
Explanation: This equation demonstrates the fundamental relationship between the energy of a photon and its frequency, as described by quantum mechanics.
Details: Calculating photon energy is essential in various fields including quantum physics, spectroscopy, photochemistry, and optical communications. It helps determine the energy levels of electromagnetic radiation.
Tips: Enter frequency in hertz (Hz). The value must be valid (frequency > 0). The calculator will compute the corresponding energy in joules.
Q1: What is Planck's constant?
A: Planck's constant (6.626 × 10⁻³⁴ J·s) is a fundamental physical constant that relates the energy of a photon to its frequency.
Q2: What are typical frequency values?
A: Frequency values can range from radio waves (kHz-MHz) to visible light (hundreds of THz) to gamma rays (exahertz and beyond).
Q3: Why is the energy value so small?
A: Due to the extremely small value of Planck's constant, the energy of individual photons is very small, typically measured in attojoules (10⁻¹⁸ J) or smaller.
Q4: Can this equation be used for all electromagnetic radiation?
A: Yes, this equation applies to all photons across the electromagnetic spectrum, from radio waves to gamma rays.
Q5: How is this related to wavelength?
A: Energy can also be calculated using wavelength through the equation \( E = \frac{hc}{\lambda} \), where c is the speed of light and λ is the wavelength.